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THERMOCAPILLARY CONVECTION IN A HORIZONTAL LAYER OF LIQUID
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An exact solution is found for the equations for free convection in a
planar horizontal layer of liquid with a constant temperature gradient
at the boundaries. Two cases of boundary conditions for the velocity
are considered: 1) the liquid is bounded by two solid planes, 2) the
upper surface of the liquid is free, and the surface tension is a func-
tion of temperature.

1. Motion of the present type occurs, for example,
in the middle of a large rectangular cell with a flat
base. If one vertical side is hot and the opposite cne
is cold, the liquid cannot be in equilibrium, and mo-
tion occurs no matter how small the temperature
difference may be. Two mechanisms give rise to
convection, First, the density of the liquid at the hot
wall is less than that at the cold one (if thermal ex-
pansion is normal). Second, the surface tension is a
function of temperature, so capillary forces cause
the liquid to move along the surface to the cold wall,
with a compensating flow in the reverse direction at
the bottom. The thickness of the layer determines
which of these is the principal mechanism. Levich
[1] has previously discussed purely capillary convec-
tion.

The temperature gradient at the boundaries may
be considered as constant, at least as an average
over the length, while the motion may be taken as
parallel to the base. This allows us to consider the
convection in an infinite plane-parallel horizontal
layer with a constant horizontal temperature gradient
at the boundaries.

Let the thickness of the layer of liquid be d = 2h.
The x axis is taken as vertical, while the z axis runs
from the hot wall to the cold one, the origin lying at
the center of the liquid. The motion is independent
of the y coordinate, which lies perpendicular to the
xz plane.

The boundary conditions for the temperature may
be put in the following form:

=— Az for z=-h. (1.1)

Here the temperature T is reckoned relative to
the mean value, while A is the horizontal tempera~
ture gradient at the boundaries of the liquid.

The speed of the steady-state motion is sought in
the form

vy =0, v, =0, v, = v(2). (1.2)

From (1.2) the equations of free convection be-
come
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Here p is pressure, p is the mean density of the

liquid, v is the kinematic viscosity, £ is the coef-
ficient of thermal expansion, x is the thermal dif-
fusivity, and g is the acceleration due to gravity.

Liquid d,om
Water HyO 2.72
Glycerol CyHs (OH)y 1.02
Méthanol CH,;OH 1.04
Butanol C,H{OH 1.143
Diethyl ether CoH;OC,Hs 1.12
Mercury Hg | 1.06

The equation of continuity is complied with iden-
tically. The condition for the flow to be closed is

h
S v (z)dz =0. (1.5)
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We eliminate the pressure from (1.3) to get
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The left side is dependent only on x, which means
that the temperature is a linear function of z. To
find 8T/8z we differentiate (1.4) with respect to z
and integrate twice with respect to x, obtaining

or '
—az—;—gLB(clx—[-cg). (L.7)

Substitution of (1.7) into (1.6) and integration with

respect to x gives
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Integration of (1.7) with respect to z gives the
temperature distribution as

T——“(Clx‘i‘cz)z‘!‘f(z)s (1.9)

where f(x) must be found from (1.4),

"d? T
@ _ or

g = 0z (1.10)

with a known right side. All the constants cj of (1.8)
and (1.9) must be found from (1.5) and the boundary
conditions.

From (1.1) and (1.9) we get

e, =0, ¢g= —Agh/v; f(£h =0. (1.11)

The condition of (1.1) causes the expression for
8T/0z of (1.7) to become an even function of x. This
problem may also be solved for the case where the
horizontal temperature gradients at the boundaries
are different.

2. Consider the free convection when the bounda-
ries are formed by solids. The condition for adhesion
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of the liquid to the boundaries gives
v =10 fOI‘z:-_th. (2-1)

Conditions (1.5), (1.11), and (2.1) uniquely deter-
mine all the constants of integration. Simple opera-
tions give us the velocity and temperature as
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Here G is the Grasshof number and P the Prandtl
number.
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Consider the heat flux in this layer of liquid. The
flux Q per unit length along the y axis consists of two
parts: the flux due to the thermal conductivity and
the convective flux:
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in which % and cp are the thermal conductivity and
specific heat, respectively.

There is also a vertical flux due to the motion,
which may be deduced from the temperature gradient
at the boundary. The flux through unit area of sur-
face at x = h is
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The same flux passes through unit area at x = —h.

An interesting point is that the velocity profile of
(2.2) coincides with that for steady-state convection
between vertical plates heated to different tempera-
tures [2].

3. Consider the motion when the upper surface is
free. The sum of the forces on unit area must here
be zero. The frictional force, which is defined by
the tensor for the viscous stresses, is accompanied
by capillary forces due to the change in the surface
tension. The condition for equilibrium may [1] be
written as

(2.4)

pv<6v> = ds aT 3.1)
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in which ¢ is the surface tension, which is taken to be
a linear function of temperature.

As before, the velocity vanishes at the lower bound-

ary,
p»=0 for a=—h. (3.2)

We use (3.1) and (3.2) with (1.5) to get from (1.8) and

11.9) that
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Here the dimensionless parameter G, character-
izes the motion due to the capillary action. The ratio

(3.3)

Gy ds

& = s (o) 8.4
indicates whether the density change or the capillary
force dominates the convection. The first terms in
(3.3) may be neglected if Gg/G > 1, which corre-
sponds to purely capillary convection; the velocity
profile is then shown by curve (a) of Fig. 1. The
first terms in (3.3) predominate if G5/G <« 1, which
corresponds to purely thermal convection, whose
velocity profile is indicated by curve (b) of Fig. 1.

Figure 2 shows the velocity profile when the two
mechanisms contribute equally. Curve (a) corre-
sponds to normal thermal expansion, with G5 = G;
curve (b) corresponds to anomalous expansion (S <
< 0) and G; = —G. Here the velocity profile and the
temperature distribution coincide with (2.2).

Relation (3.4) depends only on the parameter d =
= 2h for any given liquid. The characteristic thick-
ness dx (that for which Gg/G = 1) is given by
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4= (= s or)

The table gives the dx calculated for some liquids
for a mean temperature of 25° C, the parameters
being taken mainly from [3].

The convection is purely thermal for d > dx, while
it is largely capillary for d <« dx.

(3.5)
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